Python package
Intall the package:
pip install ddc-utility
Submodules
ddc_utility.auth module
- class ddc_utility.auth.OAuth2BearerHandler(bearer_token: str, expires_at=None)
Bases:
AuthBase
OAuth 2.0 Bearer Token authentication handler
ddc_utility.client module
- class ddc_utility.client.BaseClient(client_id: str | None = None, client_secret: str | None = None, host: str | None = None, wait_on_rate_limit: bool | None = False)
Bases:
object
- request(method: str, route: str, params: Dict | None = None, json_data: Dict | None = None, auth: AuthBase = None, content_type: str | None = None, accept: str | None = None)
- class ddc_utility.client.DdcClient(client_id: str | None = None, client_secret: str | None = None, host: str | None = None)
Bases:
BaseClient
Represents a Danube Data Cube client.
- Parameters:
client_id (str) – Danube Data Cube client id. Defaults to None. If None, it will use DDC_CLIENT_ID env variable.
client_secret (str) – Danube Data Cube client secret. Defaults to None. If None, it will use DDC_CLIENT_SECRET env variable.
host (Optional[str]) – Alternative Danube Data Cube host url. Defaults to None. If None, it will use DEFAULT_DDC_HOST constant.
Examples
Create a DDC Client object for interacting with the DDC service client = DdcClient(<client_id>, <client_secret>)
- create_aoi(name: str, geometry: Geometry | Polygon | MultiPolygon | str, time_range: TimeRange | Tuple[Timestamp, Timestamp] | Tuple[str, str], layer_selection_id: int | None = None, layer_ids: List[int] | None = None, is_dynamic: bool = False, output_data_type: int = 1) DataFrame | Dict
Create an area of interests (AOI).
- Parameters:
name (str) – The name of the area of interest.
geometry (Union[Geometry, Polygon, MultiPolygon, str]) – The geometry of the area of interest in WGS84 coordinate system. This can be provided as a ddc_utility.Geometry object, a shapely.Polygon, a shapely.MultiPolygon, or as a WKT string.
time_range (Union[TimeRange, Tuple[pd.Timestamp, pd.Timestamp], Tuple[str, str]]) – The time range for which the area of interest is defined. This can be provided as a ddc_utility.TimeRange object, a tuple of two pandas.Timestamp objects, or a tuple of two strings representing dates.
layer_selection_id (Optional[int]) – Layer selection ID. Defaults to None. If both, layer_selection_id and layer_ids are provided, only layer_selection_id will be use.
layer_ids (Optional[List[int]]) – List of layer IDs. Defaults to None. If both, layer_selection_id and layer_ids are provided, only layer_selection_id will be use.
is_dynamic (bool, optional) – Whether the AOI is dynamic (True) or static (False). Defaults to False.
output_data_type (int, optional) – Whether to return the result as a pandas.DataFrame (1) or as a dictionary (2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing AOI information.
- Return type:
Union[pd.DataFrame, Dict]
- Raises:
DdcRequestError – If an error occurs during the process of creating the AOI.
- create_crop_type(crop_type_name: str, output_data_type: int = 1) DataFrame | Dict
Create crop type.
- Parameters:
crop_type_name (str) – Name of the crop type.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing crop type information.
- Return type:
Union[pd.DataFrame, Dict]
- Raises:
DdcRequestError – If an error occurs during the process of creating the crop type.
- create_crop_variety(crop_type_id: id, crop_variety_name: str, output_data_type: int = 1) DataFrame | Dict
Create crop variety.
- Parameters:
crop_type_id (id) – ID of crop type.
crop_variety_name (str) – Name of the crop variety.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing crop variety information.
- Return type:
Union[pd.DataFrame, Dict]
- Raises:
DdcRequestError – If an error occurs during the process of creating the crop variety.
- create_growing_season(aoi_id: int, time_range: TimeRange | Tuple[Timestamp, Timestamp] | Tuple[str, str], sowing_date: Timestamp | str, crop_type_id: int, crop_variety_id: int, crop_model_id: int, output_data_type: int = 1) DataFrame | Dict
Create growing season for AOI.
- Parameters:
aoi_id (int) – ID of the AOI.
time_range (Union[TimeRange, Tuple[pd.Timestamp, pd.Timestamp], Tuple[str, str]]) – The time range for which the growing season is defined. This can be provided as a ddc_utility.TimeRange object, a tuple of two pandas.Timestamp objects, or a tuple of two strings representing dates.
sowing_date (Union[pd.Timestamp, str]) – The date when the crop is sown.
crop_type_id (int) – ID of crop type.
crop_variety_id (int) – ID of crop variety.
crop_model_id (int) – ID of crop model.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing growing season information.
- Return type:
Union[pd.DataFrame, Dict]
- Raises:
DdcRequestError – If an error occurs during the process of creating the growing season.
- fetch_temporary_credentials() Dict
Fetch token from a remote token endpoint.
- fetch_token() Dict
Fetch token from a remote token endpoint.
- get_all_aoi(with_geometry: bool = True, output_data_type: int = 1) DataFrame | List[Dict]
Get user’s all area of interests (AOI).
- Parameters:
with_geometry (bool, optional) – Whether to retrieve geometry values. Defaults to True.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as list of dictionaries (2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing AOI information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of requesting AOIs.
- get_aoi_by_id(aoi_id: int, output_data_type: int = 1) DataFrame | Dict
Get user’s area of interests (AOI) by ID.
- Parameters:
aoi_id (int) – ID of the AOI.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing AOI information.
- Return type:
Union[pd.DataFrame, Dict]
- Raises:
DdcRequestError – If an error occurs during the process of requesting the AOI.
- get_crop_models(crop_type_id: int, output_data_type: int = 1) DataFrame | List[Dict]
Get available crop model list.
- Parameters:
crop_type_id (int) – ID of crop type.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing crop model information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of requesting crop models.
- get_crop_types(output_data_type: int = 1) DataFrame | List[Dict]
Get available crop types.
- Parameters:
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing crop type information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of requesting crop types.
- get_crop_variety(crop_type_id: int, output_data_type: int = 1) DataFrame | List[Dict]
Get available crop varieties.
- Parameters:
crop_type_id (int) – ID of crop type.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing crop variety information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of requesting crop variety.
- get_data_layers(output_data_type: int = 1) DataFrame | List[Dict]
Get available data layers.
- Parameters:
output_data_type (int, optional) – Whether to return the result as a pandas.DataFrame (1) or as a dictionary (2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing data layer information.
- Return type:
Union[pd.DataFrame, Dict]
- get_data_selections(output_data_type: int = 1) DataFrame | List[Dict]
Get available data selections.
- Parameters:
output_data_type (int, optional) – Whether to return the result as a pandas.DataFrame (1) or as a dictionary (2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a dictionary containing data selections information.
- Return type:
Union[pd.DataFrame, Dict]
- get_growing_season(aoi_id: int, output_data_type: int = 1) DataFrame | List[Dict]
Get growing seasons for AOI.
- Parameters:
aoi_id (int) – ID of the AOI.
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing growing season information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of requesting growing seasons.
- open_aoi_cube(*args, **kwargs)
- open_ddc_cube(*args, **kwargs)
- run_crop_model(aoi_id: int, time_range: TimeRange | Tuple[Timestamp, Timestamp] | Tuple[str, str], sowing_date: Timestamp | str, irrigation: List[IrrigationSchedule | Tuple[Timestamp | str, float]], init_water_content: float, growing_season_id: int, crop_model_name: str, seasonal_trajectory: bool, soil_type: str, output_data_type: int = 1) DataFrame | List[Dict]
Run crop model.
- Parameters:
aoi_id (int) – ID of the AOI.
time_range (Union[TimeRange, Tuple[pd.Timestamp, pd.Timestamp], Tuple[str, str]]) – Time range for the simulation.
sowing_date (Union[pd.Timestamp, str]) – Sowing date for the simulation.
irrigation (List[Union[IrrigationSchedule, Tuple[Union[pd.Timestamp, str], float]]]) – Irrigation schedule for the simulation.
init_water_content (float) – Initial water content for the simulation.
growing_season_id (int) – ID of the growing season.
crop_model_name (str) – Name of the crop model.
seasonal_trajectory (bool) – Flag for utilization of CLMS PPI ST in the modelling process
soil_type (str) – USDA soil type definition
output_data_type (int, optional) – Whether to return the result as pandas.DataFrame (1) or as a dictionary(2). Defaults to 1.
- Returns:
Depending on the output_data_type parameter, this function returns either a pandas.DataFrame or a list of dictionary containing crop model information.
- Return type:
Union[pd.DataFrame, List[Dict]]
- Raises:
DdcRequestError – If an error occurs during the process of running crop model.
- ddc_utility.client.authorize_request(method)
- ddc_utility.client.authorize_s3_access(method)
ddc_utility.constants module
ddc_utility.cube module
- ddc_utility.cube.open_cube(path: str, fs: AbstractFileSystem | AsyncFileSystem = None, group: str = None, mode: str = 'r', **kwargs)
ddc_utility.errors module
- exception ddc_utility.errors.BadRequest(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 400 HTTP status code
- exception ddc_utility.errors.DdcClientError(message: str)
Bases:
DdcException
Exception raised for client related errors
- exception ddc_utility.errors.DdcConfigurationError(message: str)
Bases:
DdcException
Exception raised for invalid configuration
- exception ddc_utility.errors.DdcException(message: str)
Bases:
Exception
Base exception for DDC
- exception ddc_utility.errors.DdcRequestError(message: str)
Bases:
DdcException
Exception raised for unsuccessful request to remote
- exception ddc_utility.errors.Forbidden(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 403 HTTP status code
- exception ddc_utility.errors.HTTPException(response: Response, response_json=None)
Bases:
DdcException
Exception raised when an HTTP request fails
- response
Requests Response from the Twitter API
- Type:
requests.Response | aiohttp.ClientResponse
- api_errors
The errors the Twitter API responded with, if any
- Type:
list[dict[str, int | str]]
- api_codes
The error codes the Twitter API responded with, if any
- Type:
list[int]
- api_messages
The error messages the Twitter API responded with, if any
- Type:
list[str]
- exception ddc_utility.errors.NotFound(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 404 HTTP status code
- exception ddc_utility.errors.ServerError(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 5xx HTTP status code
- exception ddc_utility.errors.TooManyRequests(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 429 HTTP status code
- exception ddc_utility.errors.Unauthorized(response: Response, response_json=None)
Bases:
HTTPException
Exception raised for a 401 HTTP status code
ddc_utility.logger module
ddc_utility.utils module
- class ddc_utility.utils.Geometry(geometry: str | Polygon | MultiPolygon)
Bases:
object
“Class for WKT type geometry.
- Parameters:
geometry (Union[str, Polygon, MultiPolygon]) – Geometry.
- classmethod convert_geometry(geometry: str)
Convert geometry to Shapely object.
- property geometry
Return geometry.
- to_string()
Return WKT string representation of the geometry.
- class ddc_utility.utils.IrrigationSchedule(date: str | Timestamp, amount: float)
Bases:
object
“Class for defining irrigation schedule.
- Parameters:
date (Union[str, pd.Timestamp]) – Irrigation date.
amount (float) – Amount of irrigated water in mm.
- property amount
Return geometry.
- property date
Return geometry.
- to_string(only_date=True)
Return the tuple string representation of the object.
- class ddc_utility.utils.TimeRange(start_time: str | Timestamp, end_time: str | Timestamp)
Bases:
object
“Class for time range represented by two dates.
- Parameters:
start_time (Union[str, pd.Timestamp]) – Start date.
end_time (Union[str, pd.Timestamp]) – End date.
- classmethod convert_time(datetime: str | Timestamp, utc: bool = False)
Convert time to pandas Timestamp.
- convert_to_full_months()
Convert date to full months. For example, in the case of start time ‘2021-01-04’ to ‘2021-01-01’ or in the case of end time ‘2021-05-15’ to ‘2021-05-31’.
- property end_time
Return end time.
- property start_time
Return start time.
- property time_range
Return time range.
- to_string(only_date=True)
Return custom string representation of the time range.
- Parameters:
only_date (bool) – Wheter to return only the date part of time range. Defaults to True.